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Synchronization in Distributed Systems 

 It is important that multiple processes do not  simultaneously 

access  a shared  resource,  such  as printer,  but instead  

cooperate  in granting  each  other  temporary  exclusive   

access.   

 Besides,  multiple  processes   may  sometimes  need  to 

agree  on the ordering  of events,  such as whether  message  

m1  from process  P was sent before or after message  m2 

from process  Q 



Clock Synchronization 

    When each machine has its own clock, an event that occurred 
after another event may nevertheless be assigned an earlier time. 



Physical Clocks 

   TAI (International Atomic Time) seconds are of constant length, unlike 

solar seconds.  

   Leap seconds are introduced when necessary. 



Physical and Solar Clocks 
 The difference between physical second and solar second is 

corrected by inserting a leap second. 

 This correction gives rise to a time system based on constant 
International  Atomic  Time (which is abbreviated TAl ) seconds 
but which stays in phase with the apparent motion of the sun.  

 The universal time  is called  Universal  Coordinated   Time,  but 
is abbreviated as UTC. 

 Currently, several laboratories around the world  have  cesium  
133 clocks.   

 Periodically,  each  laboratory  tells  the  Bureau International de 
l'Heure  (BIR) in Paris how many times its clock has ticked.  

 The BIR averages these to produce TAl.   

 Thus TAI is just the mean number of ticks of the cesium  133 
clocks since midnight on January 



Broadcasting Time Signal 

 To provide UTC to people which need precise time, the 

National Institute of Standard Time (NIST) operates a 

shortwave radio station with call letters WWV from Fort 

Collins, Colorado. 

 WWV broadcasts a short pulse at the start of each UTC 

second. 

 The accuracy of WWV is ±1 msec. 

 Due to random atmospheric fluctuations, in practice the 

accuracy is no better than ±10 msec. 



Clock Synchronization Algorithms 

    The relation between clock time and UTC when clocks tick at 

different rates. 



Clock Synchronization Algorithms 

 If one machine has a WWV receiver, the goal becomes 

keeping  all the other machines synchronized to it.  

 If no machines have WWV receivers,  each machine keeps 

track of its own time, and the goal is to keep all the machines  

together as well as possible.  

 Many clock synchronization algorithms have been proposed 

for this purpose. 



Network Time Protocol (1) 

 A common approach in many protocols  and originally 

proposed by Cristian (1989) is to let clients contact a time 

server.  

 The server can accurately provide the current  time, for 

example, because it is equipped  with a WWV  receiver  or  

an accurate clock.  

 The problem is that when contacting the server, message 

delays will have outdated the reported time.  

 The trick is to find a good estimation for these delays.  



Network Time Protocol (2) 

 Figure 6-6. Getting the current time from a time server. 



The Berkeley Algorithm (1) 

 In many algorithms the time server is passive. Other 

machines periodically ask it for the time. All it does is 

respond to their queries.  

 In Berkeley UNIX, the time server (actually, a time daemon) 

is active, polling every machine from time to time to ask 

what time it is there.  

 Based on the answers, it computes an average time and tells 

all the other machines to advance their clocks to the new 

time or slow their clocks down until some specified 

reduction has been achieved.  



The Berkeley Algorithm (1) 

     The time daemon asks all 

the other machines for their 

clock values.  



The Berkeley Algorithm (2) 

 The machines answer. 



The Berkeley Algorithm (3) 

    The time daemon tells 

everyone how to adjust their 

clock. 



Logical Clocks 

 In some case it is sufficient  that  every  node  agrees on a 

current  time,  without  that  time  necessarily   being  the  

same  as  the  real  time. 

 We can also claim that if two  processes do not  interact,  it is 

not necessary   that  their  clocks  be  synchronized   because   

the  lack  of  synchronization would  not  be  observable and  

thus  could  not  cause  problems.    

 Furthermore, what  usually  matters  is  not  that  all  

processes   agree  on  exactly what  time  it is, but  rather  

that  they  agree  on the  order  in which   events  occur.  



Lamport’s Logical Clocks (1) 

 The "happens-before" relation   →   can be observed 

directly in two situations: 

• If a and b are events in the same process, and a occurs 

before b, then a → b is true. 

• If a is the event of a message being sent by one process, 

and b is the event of the message being received by 

another process, then a → b 



Lamport’s Logical Clocks (2) 

Three processes, each with its own clock. The clocks run at different rates.  



Lamport’s Logical Clocks (3) 

Lamport’s algorithm corrects the clocks. 



Lamport’s Logical Clocks (4) 

 Figure 6-10. The positioning of Lamport’s logical  

clocks in distributed systems. 



Lamport’s Logical Clocks (5) 
 Updating counter Ci for process Pi 

 

1. Before executing an event Pi executes  
Ci ← Ci + 1. 

2. When process Pi sends a message m to Pj, it sets m’s timestamp 
ts (m) equal to Ci after having executed the previous step. 

3. Upon the receipt of a message m, process Pj adjusts its own 
local counter as  
Cj ← max{Cj , ts (m)}, after which it then executes the first 
step and delivers the message to the application. 



Example: Totally Ordered Multicasting 

Updating a replicated database and leaving it in an inconsistent state. 



Vector Clocks (1) 

Concurrent message transmission using logical clocks. 



Vector Clocks (2) 

 Vector clocks are constructed by letting each process Pi 

maintain a vector VCi with the following two properties: 

1. VCi [ i ] is the number of events that have occurred so far at Pi. 

In other words, VCi [ i ] is the local logical clock at process Pi . 

2. If  VCi [ j ] = k then Pi knows that k events have occurred at Pj. 

It is thus Pi’s knowledge of the local time at Pj . 



Vector Clocks (3) 
 Steps carried out to accomplish property 2 of previous slide: 

1. Before executing an event Pi executes  
VCi [ i ] ← VCi [i ] + 1. 

2. When process Pi sends a message m to Pj, it sets m’s (vector) 
timestamp ts (m) equal to VCi after having executed the previous 
step. 

3. Upon the receipt of a message m, process Pj adjusts its own 
vector by setting  
VCj [k ] ← max{VCj [k ], ts (m)[k ]} for each k, after which it 
executes the first step and delivers the message to the 
application. 



Enforcing Causal Communication 

Enforcing causal communication. 



Mutual Exclusion: A Centralized Algorithm (1) 

    Process 1 asks the coordinator for permission to access a hared resource. 

Permission is granted.  



Mutual Exclusion: A Centralized Algorithm (2) 

    Process 2 then asks permission to access the same resource.  

    The coordinator does not reply.  



Mutual Exclusion: A Centralized Algorithm (3) 

    When process 1 releases the resource, it tells the coordinator, which 
then replies to 2. 



Mutual Exclusion: A Centralized Algorithm (4) 

 Disadvantages 

 Single point of failure 

 Dead coordinator and  “Permission Denied”  messages cannot be 

distinguished 

 Performance bottleneck in large systems 



A Distributed Algorithm (1) 

 The decision to enter a critical region is made by all 

processes in the group. 

 The process which wants to enter the critical region builds a 

message containing critical region ID, its process number, 

and the current time. 

 The process sends the message to all processes including 

itself. 



A Distributed Algorithm (2) 
 Three different cases: 

1. If the receiver is not accessing the resource and does not want 
to access it, it sends back an OK message to the sender. 

2. If the receiver already has access to the resource, it simply does 
not reply. Instead, it queues the request. 

3. If the receiver wants to access the resource as well but has not 
yet done so, it compares the timestamp of the incoming 
message with the one contained in the message that it has sent 
everyone. The lowest one wins.  



A Distributed Algorithm (3) 

Two processes want to access a shared resource at the same moment.  



A Distributed Algorithm (4) 

   Process 0 has the lowest timestamp, so it wins.  



A Distributed Algorithm (5) 

   When process 0 is done, it sends an OK also, so 2 can now go ahead. 



A Distributed Algorithm 

 If no reply is sent back when the critical region is in use, one 

point of failure will be replaced with n points of failure.  

 The number of message sent is n(n-1) 

 Each process should maintain a list of group members, 

including processes entering or leaving, or crashing. 

 The bottleneck problem is not solved. It can be replaced with 

a majority of votes instead of all votes. 

 The algorithm is more complicated, slower, and more 

expensive than the centralized algorithm. 



A Token Ring Algorithm 

    (a) An unordered group of processes on a network.  
(b) A logical ring constructed in software. 



Problems with Token Ring Algorithm 

 If the token is lost it must be regenerated 

 The time between the successive appearance of a token is 

unbounded. 

 The algorithm runs into problem if a process crashes. 

 All members of the group should maintain the current ring 

configuration. 

 



Election Algorithms 

 Many  distributed   algorithms   require  one process  to act  

as coordinator,   initiator, or otherwise perform  some  

special  role.   

 In general,  it does  not matter  which process  takes  on  this  

special  responsibility,   but one  of  them  has  to do it. In this 

 If all processes  are exactly the same, with no distinguishing 

characteristics, an election algorithm is used to choose one of 

them. 



Election Algorithms  

 The Bully Algorithm 

1.P sends an ELECTION message to all processes with 

higher numbers. 

2.If no one responds, P wins the election and becomes 

coordinator. 

3.If one of the higher-ups answers, it takes over. P’s job 

is done. 



The Bully Algorithm (1) 

    The bully election algorithm.  
     (a) Process 4 holds an election.  
     (b) Processes 5 and 6 respond, telling 4 to stop.  
     (c) Now 5 and 6 each hold an election. 



The Bully Algorithm (2) 
 Figure 6-20. The bully election algorithm.  (d) Process 6 tells 

5 to stop. (e) Process 6 wins and tells everyone. 



Questions? 


