
Synchronization

Distributed Operating Systems

Topics
 Solar Time vis-à-vis Physical Time.

 Clock Synchronization Algorithms
 Network Time Protocol

 The Berkeley Algorithm

 Logical Clocks
 Lamport’s Logical Clocks

 Vector Clocks

 Mutual Exclusion: A Centralized Algorithm
 Distributed Algorithm

 Token Ring Algorithm

 Election Algorithms

Synchronization in Distributed Systems

 It is important that multiple processes do not simultaneously

access a shared resource, such as printer, but instead

cooperate in granting each other temporary exclusive

access.

 Besides, multiple processes may sometimes need to

agree on the ordering of events, such as whether message

m1 from process P was sent before or after message m2

from process Q

Clock Synchronization

 When each machine has its own clock, an event that occurred
after another event may nevertheless be assigned an earlier time.

Physical Clocks

 TAI (International Atomic Time) seconds are of constant length, unlike

solar seconds.

 Leap seconds are introduced when necessary.

Physical and Solar Clocks
 The difference between physical second and solar second is

corrected by inserting a leap second.

 This correction gives rise to a time system based on constant
International Atomic Time (which is abbreviated TAl) seconds
but which stays in phase with the apparent motion of the sun.

 The universal time is called Universal Coordinated Time, but
is abbreviated as UTC.

 Currently, several laboratories around the world have cesium
133 clocks.

 Periodically, each laboratory tells the Bureau International de
l'Heure (BIR) in Paris how many times its clock has ticked.

 The BIR averages these to produce TAl.

 Thus TAI is just the mean number of ticks of the cesium 133
clocks since midnight on January

Broadcasting Time Signal

 To provide UTC to people which need precise time, the

National Institute of Standard Time (NIST) operates a

shortwave radio station with call letters WWV from Fort

Collins, Colorado.

 WWV broadcasts a short pulse at the start of each UTC

second.

 The accuracy of WWV is ±1 msec.

 Due to random atmospheric fluctuations, in practice the

accuracy is no better than ±10 msec.

Clock Synchronization Algorithms

 The relation between clock time and UTC when clocks tick at

different rates.

Clock Synchronization Algorithms

 If one machine has a WWV receiver, the goal becomes

keeping all the other machines synchronized to it.

 If no machines have WWV receivers, each machine keeps

track of its own time, and the goal is to keep all the machines

together as well as possible.

 Many clock synchronization algorithms have been proposed

for this purpose.

Network Time Protocol (1)

 A common approach in many protocols and originally

proposed by Cristian (1989) is to let clients contact a time

server.

 The server can accurately provide the current time, for

example, because it is equipped with a WWV receiver or

an accurate clock.

 The problem is that when contacting the server, message

delays will have outdated the reported time.

 The trick is to find a good estimation for these delays.

Network Time Protocol (2)

 Figure 6-6. Getting the current time from a time server.

The Berkeley Algorithm (1)

 In many algorithms the time server is passive. Other

machines periodically ask it for the time. All it does is

respond to their queries.

 In Berkeley UNIX, the time server (actually, a time daemon)

is active, polling every machine from time to time to ask

what time it is there.

 Based on the answers, it computes an average time and tells

all the other machines to advance their clocks to the new

time or slow their clocks down until some specified

reduction has been achieved.

The Berkeley Algorithm (1)

 The time daemon asks all

the other machines for their

clock values.

The Berkeley Algorithm (2)

 The machines answer.

The Berkeley Algorithm (3)

 The time daemon tells

everyone how to adjust their

clock.

Logical Clocks

 In some case it is sufficient that every node agrees on a

current time, without that time necessarily being the

same as the real time.

 We can also claim that if two processes do not interact, it is

not necessary that their clocks be synchronized because

the lack of synchronization would not be observable and

thus could not cause problems.

 Furthermore, what usually matters is not that all

processes agree on exactly what time it is, but rather

that they agree on the order in which events occur.

Lamport’s Logical Clocks (1)

 The "happens-before" relation → can be observed

directly in two situations:

• If a and b are events in the same process, and a occurs

before b, then a → b is true.

• If a is the event of a message being sent by one process,

and b is the event of the message being received by

another process, then a → b

Lamport’s Logical Clocks (2)

Three processes, each with its own clock. The clocks run at different rates.

Lamport’s Logical Clocks (3)

Lamport’s algorithm corrects the clocks.

Lamport’s Logical Clocks (4)

 Figure 6-10. The positioning of Lamport’s logical

clocks in distributed systems.

Lamport’s Logical Clocks (5)
 Updating counter Ci for process Pi

1. Before executing an event Pi executes
Ci ← Ci + 1.

2. When process Pi sends a message m to Pj, it sets m’s timestamp
ts (m) equal to Ci after having executed the previous step.

3. Upon the receipt of a message m, process Pj adjusts its own
local counter as
Cj ← max{Cj , ts (m)}, after which it then executes the first
step and delivers the message to the application.

Example: Totally Ordered Multicasting

Updating a replicated database and leaving it in an inconsistent state.

Vector Clocks (1)

Concurrent message transmission using logical clocks.

Vector Clocks (2)

 Vector clocks are constructed by letting each process Pi

maintain a vector VCi with the following two properties:

1. VCi [i] is the number of events that have occurred so far at Pi.

In other words, VCi [i] is the local logical clock at process Pi .

2. If VCi [j] = k then Pi knows that k events have occurred at Pj.

It is thus Pi’s knowledge of the local time at Pj .

Vector Clocks (3)
 Steps carried out to accomplish property 2 of previous slide:

1. Before executing an event Pi executes
VCi [i] ← VCi [i] + 1.

2. When process Pi sends a message m to Pj, it sets m’s (vector)
timestamp ts (m) equal to VCi after having executed the previous
step.

3. Upon the receipt of a message m, process Pj adjusts its own
vector by setting
VCj [k] ← max{VCj [k], ts (m)[k]} for each k, after which it
executes the first step and delivers the message to the
application.

Enforcing Causal Communication

Enforcing causal communication.

Mutual Exclusion: A Centralized Algorithm (1)

 Process 1 asks the coordinator for permission to access a hared resource.

Permission is granted.

Mutual Exclusion: A Centralized Algorithm (2)

 Process 2 then asks permission to access the same resource.

 The coordinator does not reply.

Mutual Exclusion: A Centralized Algorithm (3)

 When process 1 releases the resource, it tells the coordinator, which
then replies to 2.

Mutual Exclusion: A Centralized Algorithm (4)

 Disadvantages

 Single point of failure

 Dead coordinator and “Permission Denied” messages cannot be

distinguished

 Performance bottleneck in large systems

A Distributed Algorithm (1)

 The decision to enter a critical region is made by all

processes in the group.

 The process which wants to enter the critical region builds a

message containing critical region ID, its process number,

and the current time.

 The process sends the message to all processes including

itself.

A Distributed Algorithm (2)
 Three different cases:

1. If the receiver is not accessing the resource and does not want
to access it, it sends back an OK message to the sender.

2. If the receiver already has access to the resource, it simply does
not reply. Instead, it queues the request.

3. If the receiver wants to access the resource as well but has not
yet done so, it compares the timestamp of the incoming
message with the one contained in the message that it has sent
everyone. The lowest one wins.

A Distributed Algorithm (3)

Two processes want to access a shared resource at the same moment.

A Distributed Algorithm (4)

 Process 0 has the lowest timestamp, so it wins.

A Distributed Algorithm (5)

 When process 0 is done, it sends an OK also, so 2 can now go ahead.

A Distributed Algorithm

 If no reply is sent back when the critical region is in use, one

point of failure will be replaced with n points of failure.

 The number of message sent is n(n-1)

 Each process should maintain a list of group members,

including processes entering or leaving, or crashing.

 The bottleneck problem is not solved. It can be replaced with

a majority of votes instead of all votes.

 The algorithm is more complicated, slower, and more

expensive than the centralized algorithm.

A Token Ring Algorithm

 (a) An unordered group of processes on a network.
(b) A logical ring constructed in software.

Problems with Token Ring Algorithm

 If the token is lost it must be regenerated

 The time between the successive appearance of a token is

unbounded.

 The algorithm runs into problem if a process crashes.

 All members of the group should maintain the current ring

configuration.

Election Algorithms

 Many distributed algorithms require one process to act

as coordinator, initiator, or otherwise perform some

special role.

 In general, it does not matter which process takes on this

special responsibility, but one of them has to do it. In this

 If all processes are exactly the same, with no distinguishing

characteristics, an election algorithm is used to choose one of

them.

Election Algorithms

 The Bully Algorithm

1.P sends an ELECTION message to all processes with

higher numbers.

2.If no one responds, P wins the election and becomes

coordinator.

3.If one of the higher-ups answers, it takes over. P’s job

is done.

The Bully Algorithm (1)

 The bully election algorithm.
 (a) Process 4 holds an election.
 (b) Processes 5 and 6 respond, telling 4 to stop.
 (c) Now 5 and 6 each hold an election.

The Bully Algorithm (2)
 Figure 6-20. The bully election algorithm. (d) Process 6 tells

5 to stop. (e) Process 6 wins and tells everyone.

Questions?

