Distributed Operating Systems

Communication in Distributed
Systems
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Definition of a Distributed System

e A distributed system is:

A collection of independent computers that appears
to its users as a single coherent system.




Multithreaded Servers
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A multithreaded server organized in a dispatcher/ worker model.
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The Role of Virtualization in

Distributed Systems
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(a) General organization between a program, interface, and system.

(b) General organization of virtualizing system A on top of system B.
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Client-Side Software for Distribution
Transparency

® Transparent replication of a server using a client-side solution.
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General Design Issues (1)
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Client-to-server binding using a daemon.




General Design Issues (2)
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Server Clusters
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Remote Procedure Calls (1)

® A remote procedure call occurs in the following steps:
1. The client procedure calls the client stub in the normal way.

2. The client stub builds a message and calls the local operating

systern.
3. The client’s OS sends the message to the remote OS.
4. The remote OS gives the message to the server stub.

5. The server stub unpacks the parameters and calls the server.




Remote Procedure Calls (2)

® A remote procedure call occurs in the following steps

(continued):
6. The server does the work and returns the result to the stub.
7. The server stub packs it in a message and calls its local OS.
8. The server’s OS sends the message to the client’s OS.
9. The client’s OS gives the message to the client stub.
10.The stub unpacks the result and returns to the client.




Client and Server Stubs
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Principle of RPC between a client and server program.
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Conventional Procedure Call
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Parameter passing in a local procedure call:

(a) The stack before the call to read.
(b) The stack while the called procedure is active.




Passing Value Parameters (1)
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Passing Value Parameters (2)

The original message on the Pentium.




Passing Value Parameters (3)

The original message on the Pentium.
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Passing Value Parameters (4)
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The message after being inverted. The little numbers in boxes indicate

the address of each byte.
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/Parameter Specification

and Stub Generation
* (a) A procedure,

® (b) The corresponding message.

foobar( char x; float y; int z[5] )

foobar's local
variables
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Asynchronous RPC (1)

The interaction between client and server in a traditional RPC.

Client Wait for result

e

N\

Call remote Return
procedure from call
Request Reply
Server  call local procedure  11me —»

and return results

(@)




Asynchronous RPC (2)

The interaction using asynchronous RPC.
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Asynchronous RPC (3)

A client and server interacting through two asynchronous RPCs.
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Binding a Client to a Server (1)

° Registration of a server makes it possible for a client to

locate the server and bind to it.

» Server location is done in two steps:

1.Locate the server’s machine.
2.Locate the server on that machine.




Binding a Client to a Server (2)

Client-to-server binding in DCE.
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The Message-Passing Interface (1)
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Connection-oriented communication pattern using sockets.




The Message-Passing Interface (2)

Primitive Meaning

Socket Create a new communication end point

Bind Attach a local address to a socket

Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection
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The Message-Passing Interface (3)

Primitive Meaning
MPI1_bsend Append outgoing message to a local send buffer
MPI_send Send a message and wait until copied to local or remote buffer
MPI1_ssend Send a message and wait until receipt starts
MPI_sendrecv | Send a message and wait for reply
MPI_isend Pass reference to outgoing message, and continue
MPI _issend Pass reference to outgoing message, and wait until receipt starts
MPI_recv Receive a message; block if there is none
MPI_irecv Check if there is an incoming message, but do not block

Some of the most intuitive message-passing primitives of MPI.




e

-

Message-Queuing Model (1)

\

Four combinations for loosely—coupled communications using queues.
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Message-Queuing Model (2)

Basic interface to a queue n a message—queuing system.

Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified queue is nonempty, and remove the first message
Poll Check a specified queue for messages, and remove the first. Never block
Notify Install a handler to be called when a message is put into the specified queue




General Architecture of a Message-Queuing h
System (1)

The relationship between queue-level addressing and network-level

addressing.
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General Architecture of a Message-Queuing

System (2)

The general organization

of a message-queuing

system with routers.
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Message Brokers
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Questions”?




