Distributed Operating Systems

Communication in Distributed
Systems

Topics

e Transparency 1n a Distributed System

e Client-Side Distribution Transparency
e Server-Side Distribution Transparency
e Remote Procedure Calls (RPC)

e Asynchronous RPC

* Message Passing

e Message Brokers

Definition of a Distributed System

e A distributed system is:

A collection of independent computers that appears
to its users as a single coherent system.

Multithreaded Servers

. Request dispatched
Dispatcher thread to a worker thread Server
\ [/
\ / i
/r;?—‘ LT Worker thread

A

Request coming in
from the network

Operating system

A multithreaded server organized in a dispatcher/ worker model.

e

The Role of Virtualization in

Distributed Systems

Program

Program

Interface A

Hardware/software system A

Interface A

Implementation of
mimicking A on B

(@)

Interface B

Hardware/software system B

(b)

(a) General organization between a program, interface, and system.

(b) General organization of virtualizing system A on top of system B.

-

Client-Side Software for Distribution
Transparency

® Transparent replication of a server using a client-side solution.

Client machine Server 1 Server 2 Server 3
Client Server Server Server
appl appl appl appl

I

Wi 2 bl

Client side handles

request replication Replicated request

General Design Issues (1)

. . Server machine
Client machine

2. Request Register

Client |«
T

~~End-point

end point bl

1. Ask for
Daemon

(a)

Client-to-server binding using a daemon.

General Design Issues (2)

Client machine

Client

‘_,
[

2. Continue

Server machine

service Actual
server

1. Request
service

(b)

1€

Super-
server

Create
server for
requested
service

Server Clusters

Logical switch
(possibly multiple)

Distributed
file/database
system

Application/compute servers

|

Dispatched <
|
Client requests Trequest
>

> «<

\

e

|

First tier Second tier Third tier

Remote Procedure Calls (1)

® A remote procedure call occurs in the following steps:
1. The client procedure calls the client stub in the normal way.

2. The client stub builds a message and calls the local operating

systern.
3. The client’s OS sends the message to the remote OS.
4. The remote OS gives the message to the server stub.

5. The server stub unpacks the parameters and calls the server.

Remote Procedure Calls (2)

® A remote procedure call occurs in the following steps

(continued):
6. The server does the work and returns the result to the stub.
7. The server stub packs it in a message and calls its local OS.
8. The server’s OS sends the message to the client’s OS.
9. The client’s OS gives the message to the client stub.
10.The stub unpacks the result and returns to the client.

Client and Server Stubs
Wait for result

ClieNt ——
/ R
Call remote Return
procedure from call
Request Reply
Server ---------—---- - e—m e

Call local procedure Time —»
and return results

Principle of RPC between a client and server program.

e
Conventional Procedure Call

Stack pointer

Main program's Main program's
local variables local variables

nbytes

buf

fd

return address

read's local
variables

(a) (b)
Parameter passing in a local procedure call:

(a) The stack before the call to read.
(b) The stack while the called procedure is active.

Passing Value Parameters (1)

Client machine

Client process

1. Client call to

Server machine

Server process

Implementation
procedure of add
_ Server stub _
——{ k=add(i) etz < {k=addi) |
proc: "add" \ proc: "add"
int: val(i) 2 Stub builds int: val(i)
int: val(j) message int: val(j)
J
proc: "add"
Client OS int: val(i) Server OS
N int: val(j))

6. Stub makes
local call to "add"

5. Stub unpacks
message

4. Server OS
hands message
to server stub

3. Message is sent
across the network

Passing Value Parameters (2)

The original message on the Pentium.

Passing Value Parameters (3)

The original message on the Pentium.

2| |3

0 |1

5 0 0 0

1 O

A
@)

B s

i

J l L L

Passing Value Parameters (4)

0! |1} |21 |3

0 0 0 5

4. |51 |61 |7,

L L I 9
(C)

The message after being inverted. The little numbers in boxes indicate

the address of each byte.
\ /

/Parameter Specification

and Stub Generation
* (a) A procedure,

® (b) The corresponding message.

foobar(char x; float y; int z[5])

foobar's local
variables

X

NS A

NIN|N|N|[N

(b)

Asynchronous RPC (1)

The interaction between client and server in a traditional RPC.

Client Wait for result

e

N\

Call remote Return
procedure from call
Request Reply
Server call local procedure 11me —»

and return results

(@)

Asynchronous RPC (2)

The interaction using asynchronous RPC.

Client Wait for acceptance

/4 N

Call remote Return
procedure from call

Request Accept request

Server Call local procedure Time —»

(b)

Asynchronous RPC (3)

A client and server interacting through two asynchronous RPCs.

Wait for Interrupt client
acceptance
Client “f,..__ \
/ \
Call remote fReturn " oo
d rom ca eturn
PSS results Acknowledge
Accept
Request request
SENEl srs=RERss——n—— N e
Call local procedure \ Time —»

Call client with
one-way RPC

Binding a Client to a Server (1)

° Registration of a server makes it possible for a client to

locate the server and bind to it.

» Server location is done in two steps:

1.Locate the server’s machine.
2.Locate the server on that machine.

Binding a Client to a Server (2)

Client-to-server binding in DCE.

5 Lo

Client machine

Directory machine

Client

]

Directory
server
AS
5. Do RPC

Server machine

@ter service

™~

—

4. Ask for end point

Server

—

=

K

daemon

1. Register end point

D

™ End point

table

The Message-Passing Interface (1)

Server
bind [listen |- acrfpt > read |

\
! \

1
. . 0 | ‘f . . \
Synchronization point — / Communication \,
|

v ;‘." \
| socket | prconnect—¥» write

Client

Connection-oriented communication pattern using sockets.

The Message-Passing Interface (2)

Primitive Meaning

Socket Create a new communication end point

Bind Attach a local address to a socket

Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

e
The Message-Passing Interface (3)

Primitive Meaning
MPI1_bsend Append outgoing message to a local send buffer
MPI_send Send a message and wait until copied to local or remote buffer
MPI1_ssend Send a message and wait until receipt starts
MPI_sendrecv | Send a message and wait for reply
MPI_isend Pass reference to outgoing message, and continue
MPI _issend Pass reference to outgoing message, and wait until receipt starts
MPI_recv Receive a message; block if there is none
MPI_irecv Check if there is an incoming message, but do not block

Some of the most intuitive message-passing primitives of MPI.

e

-

Message-Queuing Model (1)

\

Four combinations for loosely—coupled communications using queues.

Sender
running

Sender
running

Sender
passive

<« <
1] <
Sy

Receiver Receiver Receiver
running passive running
(a) (b) (c)

Sender
passive

Receiver
passive

(d)

/

Message-Queuing Model (2)

Basic interface to a queue n a message—queuing system.

Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified queue is nonempty, and remove the first message
Poll Check a specified queue for messages, and remove the first. Never block
Notify Install a handler to be called when a message is put into the specified queue

General Architecture of a Message-Queuing h
System (1)

The relationship between queue-level addressing and network-level

addressing.

Look-up
| transport-level Receiver

/ address of queue

Queuing ‘l,@ Queue-level //45'—‘ Queuing
layer Y layer

Sender

b | address L
Local OS 8, Address look-up Local OS ?\
database) oy
. Transport-level
"""""""""""" address
Network

General Architecture of a Message-Queuing

System (2)

The general organization

of a message-queuing

system with routers.

\

Sender A
Application
£ Application
CF{eceive
queue
(117 <— R2 L1 /
Message []
] lk\\ - IE “»
Send queue \ / .
[I
. Application
[1]
e \ k)
—P
Fi 7] E s
[1] . ;
{\: . > T Receiver B
Application
Router

Message Brokers

Repository with
conversion rules

Source client Message broker and programs Destination client
\ \ [/
\ \ / /

Broker
program [€%

R

OS

OS

Network

Questions”?

