
Introduction
Processes and Threads

Distributed Operating Systems

Topics

 Definition of a Distributed System

 Transparency in a Distributed System

 Scalability

 Types of Distributed Systems

 Transaction processing Systems

 Distributed Pervasive Systems

 Virtualization in Distributed Systems

Definition of a Distributed System (1)

 A distributed system is:

 A collection of independent computers that appears
to its users as a single coherent system.

Definition of a Distributed System (2)

A distributed system organized as middleware. The middleware

layer extends over multiple machines, and offers each

application the same interface.

Transparency in a Distributed System

Different forms of transparency in a distributed

system (ISO, 1995).

Scalability Problems

Examples of scalability limitations.

Scalability Problems

 Characteristics of decentralized algorithms:

• No machine has complete information about the system state.

• Machines make decisions based only on local information.

• Failure of one machine does not ruin the algorithm.

• There is no implicit assumption that a global clock exists.

Scaling Techniques (1)

The difference between letting (a) a server or (b) a

client check forms as they are being filled.

Scaling Techniques (2)

An example of dividing the DNS

name space into zones.

Pitfalls when Developing Distributed Systems

 False assumptions made by first time developer:

• The network is reliable.

• The network is secure.

• The network is homogeneous.

• The topology does not change.

• Latency is zero.

• Bandwidth is infinite.

• Transport cost is zero.

• There is one administrator.

Types of Distributed Systems

Cluster Computing Systems

 An example of a cluster computing system.

Grid Computing Systems

A layered architecture for grid computing systems.

Distributed Information Systems

 In many cases, a networked application simply consisted of a

server running that application (often including a database)

and making it available to remote clients.

 Integration at the lowest level would allow clients to wrap a

number of requests, possibly for different servers, into a

single larger request and have it executed as a distributed

transaction.

 The key idea was that all, or none of the requests would be

executed.

Transaction Processing Systems (1)

Example primitives for transactions.

Transaction Processing Systems (2)
 Characteristic properties of transactions:

• Atomic: To the outside world, the transaction happens indivisibly.

• Consistent: The transaction does not violate system invariants.

• Isolated: Concurrent transactions do not interfere with each

other.

• Durable: Once a transaction commits, the changes are

permanent.

Transaction Processing Systems (3)

A nested transaction.

Transaction Processing Systems (4)

 Figure 1-10. The role of a TP monitor in distributed systems.

Enterprise Application Integration

Middleware as a communication facilitator in enterprise application
integration.

Distributed Pervasive Systems
 The distributed systems are largely characterized by

their stability:
 nodes are fixed
 have a more or less permanent and high-quality

connection to a network.
 Pervasive distributed systems are characterized by
 being small,
 battery-powered,
mobile,
 and having only a wireless connection,

 although not all these characteristics apply to all
devices.

Electronic Health Care Systems (1)

Monitoring a person in a pervasive electronic health care system, using

 (a) a local hub or

 (b) a continuous wireless connection.

Electronic Health Care Systems (2)
 Questions to be addressed for health care systems:

• Where and how should monitored data be stored?

• How can we prevent loss of crucial data?

• What infrastructure is needed to generate and propagate alerts?

• How can physicians provide online feedback?

• How can extreme robustness of the monitoring system be realized?

• What are the security issues and how can the proper policies be
enforced?

Threads and Processes

Thread Usage in Nondistributed Systems

 Context switching as the result of IPC.

Multithreaded Servers

A multithreaded server organized in a dispatcher/worker model.

The Role of Virtualization in

Distributed Systems

 (a) General organization between a program, interface, and system. (b)

General organization of virtualizing system A on top of system B.

Architectures of Virtual Machines (1)

 Interfaces at different levels

• An interface between the hardware and software

consisting of machine instructions that can be invoked by

any program.

• An interface between the hardware and software,

consisting of machine instructions that can be invoked only

by privileged programs, such as an operating system.

Architectures of Virtual Machines (2)

 Interfaces at different levels

• An interface consisting of system calls as offered by

an operating system.

• An interface consisting of library calls generally

forming what is known as an application programming

interface (API).

 (In many cases, the aforementioned system calls are

hidden by an API.)

Architectures of Virtual Machines (3)

 Various interfaces offered by computer systems.

Architectures of Virtual Machines (4)

 A process virtual machine, with multiple instances of

(application, runtime) combinations.

Architectures of Virtual Machines (5)

 A virtual machine monitor, with multiple instances of
(applications, operating system) combinations.

Questions?

