
Introduction
Processes and Threads

Distributed Operating Systems

Topics

 Definition of a Distributed System

 Transparency in a Distributed System

 Scalability

 Types of Distributed Systems

 Transaction processing Systems

 Distributed Pervasive Systems

 Virtualization in Distributed Systems

Definition of a Distributed System (1)

 A distributed system is:

 A collection of independent computers that appears
to its users as a single coherent system.

Definition of a Distributed System (2)

A distributed system organized as middleware. The middleware

layer extends over multiple machines, and offers each

application the same interface.

Transparency in a Distributed System

Different forms of transparency in a distributed

system (ISO, 1995).

Scalability Problems

Examples of scalability limitations.

Scalability Problems

 Characteristics of decentralized algorithms:

• No machine has complete information about the system state.

• Machines make decisions based only on local information.

• Failure of one machine does not ruin the algorithm.

• There is no implicit assumption that a global clock exists.

Scaling Techniques (1)

The difference between letting (a) a server or (b) a

client check forms as they are being filled.

Scaling Techniques (2)

An example of dividing the DNS

name space into zones.

Pitfalls when Developing Distributed Systems

 False assumptions made by first time developer:

• The network is reliable.

• The network is secure.

• The network is homogeneous.

• The topology does not change.

• Latency is zero.

• Bandwidth is infinite.

• Transport cost is zero.

• There is one administrator.

Types of Distributed Systems

Cluster Computing Systems

 An example of a cluster computing system.

Grid Computing Systems

A layered architecture for grid computing systems.

Distributed Information Systems

 In many cases, a networked application simply consisted of a

server running that application (often including a database)

and making it available to remote clients.

 Integration at the lowest level would allow clients to wrap a

number of requests, possibly for different servers, into a

single larger request and have it executed as a distributed

transaction.

 The key idea was that all, or none of the requests would be

executed.

Transaction Processing Systems (1)

Example primitives for transactions.

Transaction Processing Systems (2)
 Characteristic properties of transactions:

• Atomic: To the outside world, the transaction happens indivisibly.

• Consistent: The transaction does not violate system invariants.

• Isolated: Concurrent transactions do not interfere with each

other.

• Durable: Once a transaction commits, the changes are

permanent.

Transaction Processing Systems (3)

A nested transaction.

Transaction Processing Systems (4)

 Figure 1-10. The role of a TP monitor in distributed systems.

Enterprise Application Integration

Middleware as a communication facilitator in enterprise application
integration.

Distributed Pervasive Systems
 The distributed systems are largely characterized by

their stability:
 nodes are fixed
 have a more or less permanent and high-quality

connection to a network.
 Pervasive distributed systems are characterized by
 being small,
 battery-powered,
mobile,
 and having only a wireless connection,

 although not all these characteristics apply to all
devices.

Electronic Health Care Systems (1)

Monitoring a person in a pervasive electronic health care system, using

 (a) a local hub or

 (b) a continuous wireless connection.

Electronic Health Care Systems (2)
 Questions to be addressed for health care systems:

• Where and how should monitored data be stored?

• How can we prevent loss of crucial data?

• What infrastructure is needed to generate and propagate alerts?

• How can physicians provide online feedback?

• How can extreme robustness of the monitoring system be realized?

• What are the security issues and how can the proper policies be
enforced?

Threads and Processes

Thread Usage in Nondistributed Systems

 Context switching as the result of IPC.

Multithreaded Servers

A multithreaded server organized in a dispatcher/worker model.

The Role of Virtualization in

Distributed Systems

 (a) General organization between a program, interface, and system. (b)

General organization of virtualizing system A on top of system B.

Architectures of Virtual Machines (1)

 Interfaces at different levels

• An interface between the hardware and software

consisting of machine instructions that can be invoked by

any program.

• An interface between the hardware and software,

consisting of machine instructions that can be invoked only

by privileged programs, such as an operating system.

Architectures of Virtual Machines (2)

 Interfaces at different levels

• An interface consisting of system calls as offered by

an operating system.

• An interface consisting of library calls generally

forming what is known as an application programming

interface (API).

 (In many cases, the aforementioned system calls are

hidden by an API.)

Architectures of Virtual Machines (3)

 Various interfaces offered by computer systems.

Architectures of Virtual Machines (4)

 A process virtual machine, with multiple instances of

(application, runtime) combinations.

Architectures of Virtual Machines (5)

 A virtual machine monitor, with multiple instances of
(applications, operating system) combinations.

Questions?

