Distributed Operating Systems

File Systems

Topics

e Files
e Directories

 File system implementation

e Example file systems
e MS-DOS
e Windows 98
e UNIX

e
Long-term Information Storage

. A computer system must store large amounts of data

2. Information stored must survive the termination of the

process using 1t

3. Multiple processes must be able to access the information

concurrently

File Structure

1 Byte 1 Record

e e

Ant Fox Pig

Cat || Cow || Dog Goat Lion|] Owl Pony || Rat |]Worm

|]Hen Ibis || Lamb

(a) (b) ()

® Three kinds of files

° byte sequence
® record sequence
® tree

-,

File Types

Module
Magic number Hoad name
eader
Text size
Data size Dat
ate
E BSS size
E Symbol table size n?:éiﬁcta Owner
Entry point Protection
) Size
Fl
- Header
= Text 22
Object
module
T Data T Header
A Relocation A
T bits T
Object
module
1y Symbol A
T table T
(a) (b)

(a) An executable tile (b) An archive

e
File Access

® Sequential access
® read all bytes/records from the beginning
® cannot jump around, could rewind or back up

® convenient when medium was magnetic tape

e Random access
° bytes /records read in any order
® essential for data base systems

® read can be ...
move file marker (seek), then read or ...

read and then move file marker

File Attributes

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner
Read-only flag 0 for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up; 1 for needs to be backed up

ASClI/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags 0 for unlocked; nonzero for locked
Record length Number of bytes in a record

Key position Offset of the key within each record
Key length Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file has last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

Possible file attributes

File Operations

1.
. Delete

N 1 B~ DN

Create

. Open

Close
Read
Write

7. Append

8. Seek

9. Get attributes
10.Set Attributes

11.Rename

-,

Memory-Mapped Files

Program
text

Data

(@)

Program
text

Data

abc

Xyz

(b)

(a) Segmented process before mapping files into its address

space

(b) Process after mapping

existing file abc into one segment

creating new segment for Xyz

/ u u
Directories

Single-Level Directory Systems

. Root directory

01016010

o A single level directory system
® contains 4 files

* owned by 3 ditferent people, A, B, and C

(-

Two-level Directory Systems

Root directory

User
directory

[etters indicate owners of the directories and files

Hierarchical Directory Systems

Root directory

User
directory_ |

A hierarchical directory system

Path Names

bin |=— Root directory
etc
lib
usr
tmp %
bin etc lib usr tmp
ast
jim
(lib
ast lib jim

- —— /usr/jim
dict.

A UNIX directory tree

Directory Operations

1. Create 5. Readdir
2. Delete 6. Rename
3. Openéjr 7. Link

4. Closedir 8. Unlink

e

File System Implementation

Partition table

|

/

Entire disk

Disk partition

b~

\

MBR

Boot block

Super block

Free space mgmt

|-nodes

Root dir

Files and directories

(-

A possible file system layout

Implementing Files (1)

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)
— " r -) r - 2] —"
HNEEEEEEEEEEENEEENEEEEEEEEEEEEEENENEEEEEN

— - — L J
File B File D File F
(3 blocks) (5 blocks) (6 blocks)
(a)

(File A) (File C) (File E) (File G)
——— r 1 r siia N P——g
HEEESNSENENNSEEEEENENENEEEEEEEEEEEEEEEEE®S

— - L g J
File B 5 Free blocks 6 Free blocks

(b)

(a) Contiguous allocation of disk space for 7 files
(b) State of the disk after files D and E have been removed

(-

e

Implementing Files (2)

File A
> o R —— —+— O
File File File File File
block block block block block
0 1 2 3 4
Physical 4 7 2 10 12
block
File B
— —— —+—> O
File File File File
block block block block
0 1 2 3
Physical 6 3 11 14
block

Storing a file as a linked list of disk blocks

Implementing Files (3)

Physical
block
0
1
2 10
3 11
4 7 —<—— File A starts here
5
6 ——— File B starts here
7
8
9
10 12
11 14
12 1
13
14 1
15 ——— Unused block

@ Linked list allocation using a File Allocation Table (FAT) in RAM
A,

Implementing Files (4)

File Attributes

Address of disk block O

Address of disk block 1

Address of disk block 2

Address of disk block 3

Address of disk block 4

Address of disk block 5

Address of disk block 6

Address of disk block 7

Address of block of pointers

Y

An example i-node

Disk block

containing

additional
disk addresses

e

(-

Implementing Directories (1)

1 I /
games | attributes games | “
mail | attributes mail | B sanall
I . |
news E attributes news i .
work | attributes work | \\
(a) (b) Data structure
containing the
attributes

(a) A simple directory

fixed size entries, disk addresses and attributes in directory entry

(b) Directory in which each entry just refers to an i-node

Implementing Directories (2)

File 1 entry length - Pointer to file 1's name Entry
for one
File 1 attributes File 1 attributes file
Entry : : .
for one < P r 0 | Pointer to file 2's name N
file e e 1 - . .
b i -] File 2 attributes
€ t X . Pointer to file 3's name
File 2 entry length
File 3 attributes
File 2 attributes
p e r
o n n e L
| X p r o j
File 3 entry length & - L -
b u d g
File 3 attributes e t X p 1
eap
f | o | o | E e r S o]
n e I
f o o
X ;

(@) (b)
* Two ways of handling long file names in directory
® (a) In-line

® (b) In a heap

(-

e
Shared Files (1)

. Root directory

Shared file

File system containing a shared file

(-

(-

Shared Files (2)

C's directory B's directory C's directory

\

/ \ /
/ \ /
Owner =C Owner =C
Count = 1 Count=2

! l
O O

(a) (b)

(a) Situation prior to linking

(b) After the link is created

(c)After the original owner removes the file

B's directory

A

\\
Owner = C
Count = 1

:
O

(c)

Disk Space Management (1)

1000 ——— e ——— g = — — =0 —{ 1000
Disk space utilization \

C

o 800 —{ 80 8

Q v

4 N
m = o
X 600 —60 5§
@ @ £
© o 3
o 400 |- 140 28

a 5

200 |- 20 B

Data rate e
0 Py I I I I I 0
0 128 256 512 1K 2K 4K 8K 16K O

Block size

* Dark line (left hand scale) gives data rate of a disk

* Dotted line (right hand scale) gives disk space efficiency
e All files 2KB

(-

42

Free disk blocks: 16, 17, 18

136

230

210

162

86

Disk Space Management (2)

97

612

234

1001101101101100

41

342

897

oMomMoIMNMoIN

63

214

422

1010110110110110

21

160

140

0110110110111011

48

664

223

momMmotmonn

262

216

223

1101101010001111

320

160

0000111011010111

iyl
14y
iyl
143

310

126

1011101101101

11
14y
iyl
143

216

180

1100100011101111

31
[44
i)l
4y

482

142

iyl
113

A 1 KB disk block can hold 256
32-bit disk block numbers

(@

141

0111011101110111

1101111101101

A bit map

(b)

(a) Storing the free list on a linked list

@ (b) A bit map

File System Performance (1)

Hash table Front (LRU) Rear (M RU)

¢/fx\\iy
iy

The block cache data structures

File System Performance (2)

|-nodes are
located near
the start

of the disk

(@) (b)

® [-nodes placed at the start of the disk
® Disk divided into cylinder groups

® cach with its own blocks and i-nodes

Disk is divided into
cylinder groups, each
with its own i-nodes

Cylinder group

e
Log-Structured File Systems

* With CPUs faster, memory larger
e disk caches can also be larger
® increasing number of read requests can come from cache

® thus, most disk accesses will be writes

® LFS Strategy structures entire disk as a log
® have all writes initially buffered in memory
° periodically write these to the end of the disk log

® when file opened, locate i-node, then find blocks

(-

The CP/M File System (1)

Address
OxFFFF BIOS
CP/M
Shell
User program
0x100 Zero page

Memory layvout of CP/M
° o

The CP/M File System (2)

Bytes 1 8 3 1 2 —= 16
7
File name %
7
. / / T Disk bloclz numbers
User code File type Extent Block count

(extension)

The CP/M directory entry format

Bytes

The MS-DOS File System (1)

8

3 1 10

2 2 2 4

File n

ame

Size

Xten

sion Attributes

The MS-DOS directory entry

|

\

N

Reserved Time Date First

block
number

e

The MS-DOS File System (2)

Block size | FAT-12 | FAT-16 | FAT-32
0.5 KB 2 MB
1 KB 4 MB
2 KB 8 MB 128 MB
4 KB 16 MB 256 MB 1 1B
8 KB 512 MB 2 1B
16 KB 1024 MB 2 1B
32 KB 2048 MB 2 1B

® Maximum partition for different block sizes

@' The empty boxes represent forbidden combinations

The Windows 98 File System (1)

Bytes 8 3 1 1 4 2 2 4 2 4
N Creation Last Last write ; :
Eise Ens Ext T date/time |access date/time Fligisize
el | T T
rotiss Sec Upper 16 bits Lower 16 bits
of starting of starting
block block

The extended MOS-DOS directory entry used in Windows 98

(-

The Windows 98 File System (2)

Bytes 1

10

1 1 1 12 2 4

5 characters

0 6 characters 0 |2 characters

N\

Sequence

(-

Attributes

L]

Checksum

An entry for (part of) a long file name in Windows 98

Bytes

©

The Windows 98 File System (3)

C
68| d o g A K 0
C
3| o Vv e A K| t h e 0
C
2| w n A K| X j u m 0
C
11 T h e A K| u i g k 0
Creation |Last Last .
TIHE QU | = 1 A S time acc | Upp write Low Size
L I | | | | |

An example of how a long name is stored in Windows 98

The UNIX V7 File System (1)

Bytes 2 14
File name
|-node
number

A UNIX V7 directory entry

e U e System (2)
Attributes Single
: indirect
o < o block
7 3 Addresses of
o (15 Double
% 4 indirect = data blocks
© block 1,
- T T
\ Triple ..
’ indirect T -
.\ block
r
/

\ 1

A UNIX i-node T

The UNIX V7 File System

(3)

Block 406
is /usr/ast
directory

26 | -

6 LN]

64 | grants

92 | books

60 | mbox

Block 132 |-node 26
|-node 6 is /usr is for
Root directory is for /usr directory /usr/ast
1 6|
Mode Mode
1 size 1| e size
, times , times
4 | bin 19 | dick
7 | dev 132 30 | erik 406
14 | lib 51 | jim
9 | etc 26 | ast
6 | usr 45 | bal
8 | tmp
|-node 6 |-node 26
Looking up says that /usr/ast says that
usr yields /usr is in is i-node /usr/ast is in
i-node 6 block 132 26 block 406

The steps in looking up /usr/ast/mbox

81 minix

17 | src

/usr/ast/mbox
is i-node
60

Questions”?

