
Inter-Process Communication

Process Scheduling

Distributed Operating Systems

Process Concept

 Process – a program in execution; process execution must
progress in sequential fashion

 A process includes:

 program counter

 stack

 data section

Threads

3

 A thread of execution is the smallest sequence of

programmed instructions that can be managed independently

by an operating system scheduler.

 The processor switches between different threads (context

switching)

Threads
The Thread Model (1)

4

(a) Three processes each with one thread
(b) One process with three threads

The Thread Model (2)

5

 (Left) Items shared by all threads in a process

 (Right) Items private to each thread

The Thread Model (3)

6

Each thread has its own stack

Thread Usage (1)

7

A word processor with three threads

Thread Usage (2)

8

A multithreaded Web server

Thread Usage (3)

9

 Rough outline of code for previous slide

(a) Dispatcher thread

(b) Worker thread

Pop-Up Threads

10

 Creation of a new thread when message arrives
(a) before message arrives
(b) after message arrives

Conflicts in Multithreaded Systems (1)

11

Conflicts between threads over the use of a global variable

Conflicts in Multithreaded Systems (2)

12

Threads can have private global variables

Interprocess Communication
Race Conditions

13

Two processes want to access shared memory at same time

Critical Regions (1)

14

Four conditions to provide mutual exclusion

1. No two processes simultaneously in critical region

2. No assumptions made about speeds or numbers of CPUs

3. No process running outside its critical region may block another

process

4. No process must wait forever to enter its critical region

Critical Regions (2)

15

Mutual exclusion using critical regions

Mutual Exclusion with Busy Waiting (1)

16

Proposed solution to critical region problem
(a) Process 0. (b) Process 1.

Mutual Exclusion with Busy Waiting (2)

17 Peterson's solution for achieving mutual exclusion

Mutual Exclusion with Busy Waiting (3)

18

Entering and leaving a critical region using the

TSL instruction

Sleep and Wakeup

19 Producer-consumer problem with fatal race condition

Semaphores

20

 Special type of variables in which:

 Initialization possible only at declaration

 The only possible operations are:

 Increment by one using up(.) function

 Decrement by one using down(.) function only if the current value is

positive (>1)

 If the semaphore’s value is zero, the process is blocked at down(.)

function call

Semaphores

21 The producer-consumer problem using semaphores

Message Passing

22
The producer-consumer problem with N messages

Dining Philosophers (1)

23

 Philosophers eat/think

 Eating needs 2 forks

 Pick one fork at a time

 How to prevent deadlock

Dining Philosophers (2)

24

A nonsolution to the dining philosophers problem

Dining Philosophers (3)

25 Solution to dining philosophers problem (part 1)

Dining Philosophers (4)

26 Solution to dining philosophers problem (part 2)

The Readers and Writers Problem

27
A solution to the readers and writers problem

The Sleeping Barber Problem (1)

28

The Sleeping Barber Problem (2)

29 Solution to sleeping barber problem.

Scheduling (1)

30

 Bursts of CPU usage alternate with periods of I/O wait
 a CPU-bound process
 an I/O bound process

Scheduling (2)

31

Scheduling Algorithm Goals

Scheduling in Batch Systems (1)

32

An example of shortest job first scheduling

Scheduling in Batch Systems (2)

33
Three level scheduling

Scheduling in Interactive Systems (1)

34

 Round Robin Scheduling
 list of ready processes
 list of ready processes after B uses up its time slice

Scheduling in Interactive Systems (2)

35

A scheduling algorithm with four priority classes

Scheduling in Real-Time Systems

36

Schedulable real-time system

 Given

 m periodic events

 event i occurs within period Pi and requires Ci seconds

 Then the load can only be handled if

1

1
m

i

i i

C

P



Policy versus Mechanism

37

 Separate what is allowed to be done with how it is done

 a process knows which of its children threads are important and
need priority

 Scheduling algorithm parameterized

 mechanism in the kernel

 Parameters filled in by user processes

 policy set by user process

Thread Scheduling (1)

38

Possible scheduling of user-level threads

 50-msec process quantum

 threads run 5 msec/CPU burst

Thread Scheduling (2)

39

Possible scheduling of kernel-level threads

 50-msec process quantum
 threads run 5 msec/CPU burst

Questions?

40

