Distributed Operating Systems

Inter-Process Communication

Process Scheduling

Process Concept

® Process — a program in execution; process execution must
progress in sequential fashion

* A process includes:
® program counter
® stack

e data section

Threads

e A thread of execution is the smallest sequence of
programmed instructions that can be managed independently

by an operating system scheduler.

® The processor switches between different threads (context

SWitChing)

e

User
space

Kernel
space

(a) Three processes each with one thread
(b) One process with three threads

(-

Threads
The Thread Model (1)

Process

Process 1 Process 1 Process 1
\\ | |
| ;
Thread
{ Kernel

|

&

Thread

(a)

Kernel

(b)

The Thread Model (2)

Per process items
Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers
Accounting information

Per thread items
Program counter
Registers

Stack

State

* (Left) Items shared by all threads in a process

* (Right) Items private to each thread

-,

The Thread Model (3)

Thread 2
Thread | Thread 3
ﬁ/ // Process
Threzd s H-< Thread 3's stack
stack
Kernel

Each thread has its own stack

Thread Usage (1)

Four scare and seven
years age, our fathers
bought farth npon this
continent a new nation
conceived in liberty,
and dedicated 1o the
proposition that all
men are created equal.

Mow we are engaged
in a great civil war
testing whether that

nation, ar any nation
=0 conceived and so
dedicated, can long
endure. We are met an
a great battlefisld of
that war.

We have coms 1o
dedicate a portion of
that field as a final
Testing place for those
who here gave theic

lives that this nation
might live. b s
altogether fitting and
praper that we should
do this.

But, ina largersemss,
we cannet dedicate, we
cannot consecrate we
cannot hallow this
gound. The bmve
men, living and dead,

who struggled here
have consecmted it, far
abave our poar pawer
to add or detract. The
werld will little nots,
rer long remember,
what we say here, but|
it can never forget
what they did here.
1tis for us the living,
mther, o be dedicated

her 1o the unfinished
wotk which they wha
fought here have thus
far s nobly advanced.
1t is mther for us 1o be
hzte dedicated 1o the
great sk remaining
befor ws, that from
these honored dead we
take increased devotion
to that canes for which

they gave the last full
measure of devotion,
that we here highly
resolve that thess dead
shall not have died in
vain that this nation,
under Ged, shall have
a new birth of freedom
and that government of
the people by the
people, for the people

L

~"

Kernel

Keyboard

A word processor with three threads

D

IS

k

Thread Usage (2)

Web server process

Dispatcher thread

- Worker thread
1 o

Web page cache

Kernel
Kernel space

Network
connection

A multithreaded Web server

Thread Usage (3)

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work(&buf)
handoff_work(&buf); look_for_page_in_cache(&buf, &page);
} if (page_not_in_cache(&page)

read_page_from_disk(&buf, &page);
return_page(&page);
}
(2) (b)

© Rough outline of code for previous slide
(a) Dispatcher thread
(b) Worker thread

-,

e
Pop-Up Threads

Pop-up thread
Process created to handle

Existing thread

/

incoming message

Incoming message)

Network
(a) (b)

® Creation of a new thread when message arrives
(a) before message arrives
(b) after message arrives

o

e

Conflicts in Multithreaded Systems (1)

Thread 1 Thread 2

%

Access (ermo set)

§

—~— [Ime

|

Open {(errno overwritten)

§

%

Errno inspected

Conflicts between threads over the use of a global variable

/
Conflicts in Multithreaded Systems (2)

Thread 1's
code

Thread 2's
code

Thread 1's
stack e

Thread 2's
/ stack

Thread 1's
globals

Thread 2's
globals

Threads can have private global variables

(-

Interprocess Communication
Race Conditions

Spooler

directory
4 abc out=4
6 prog.n
73 in=7

Two processes want to access shared memory at same time

Critical Regions (1)

Four conditions to provide mutual exclusion

1.

2.

3.

No two processes simultaneously in critical region
No assumptions made about speeds or numbers of CPUs

No process running outside its critical region may block another

pI’OCGSS

No process must wait forever to enter its critical region

Critical Regions (2)

A enters critical region

/ A leaves critical region

B leaves
critical region

Process A : I
I I I I
| I I |
| | Battemptsto B enters |
| : enter critical I critical region :

region
| I I |
| I

Process B
| I i
! ! i ! !
I I B blocked l I

T, T, T, T

Time ——

Mutual exclusion using critical regions

e

(-

\
Mutual Exclusion with Busy Waiting (1)
while (TRUE) { while (TRUE) {
while (turn !=0) /* loop */ ; while (turn 1= 1) /* loop */ ;
critical _region(); critical _region();
turn = 1; turn = 0;
noncritical _region(); noncritical_region();
| |
(a) (b)
Proposed solution to critical region problem
(a) Process 0. (b) Process 1.

e

@

#define FALSE 0
#define TRUE 1
#define N 2

int turn;
int interested[N];

void enter_region(int process);

{

int other;

other = 1 — process;
interested[process] = TRUE;
turn = process;

Mutual Exclusion with Busy Waiting (2)

/* number of processes */

/* whose turn is it? */
/* all values initially 0 (FALSE) */

/* process is 0 or 1 */
/* number of the other process */
/* the opposite of process */

/* show that you are interested */
/* set flag */

while (turn == process && interested[other] == TRUE) /* null statement */ ;

}

void leave region(int process)

{
}

interested[process] = FALSE;

/* process: who is leaving */

/* indicate departure from critical region */

terson's solution for achieving mutual exclusion

e
Mutual Exclusion with Busy Waiting (3)

enter_region:

TSL REGISTER,LOCK | copy lock to register and set lock to 1
CMP REGISTER,#0 | was lock zero?
JNE enter_region | if it was non zero, lock was set, so loop

RET | return to caller; critical region entered

leave region:
MOVE LOCK, #0 | store a 0 in lock
RET | return to caller

Entering and leaving a critical region using the

TSL instruction

(-

e
Sleep and Wakeup

#define N 100 /* number of slots in the buffer */
int count = 0; /* number of items in the buffer */

void producer(void)

{
int item;
while (TRUE) { /* repeat forever */
item = produce_item(); /* generate next item */
if (count == N) sleep(); /* if buffer is full, go to sleep */
insert_item(item); /* put item in buffer */
count = count + 1; /* increment count of items in buffer */

if (count == 1) wakeup(consumer); /* was buffer empty? */

void consumer(void)

{

int item;

while (TRUE) { /* repeat forever */
if (count == 0) sleep(); /* if buffer is empty, got to sleep */
item = remove_ item(); /* take item out of buffer */
count = count — 1; /* decrement count of items in buffer */
if (count == N — 1) wakeup(producer); /* was buffer full? */
consume_item(item); /* print item */

}

@ Producer-consumer problem with fatal race condition

/

Semaphores

* Special type of variables in which:
® Initialization possible only at declaration

® The only possible operations are:

Increment by one using up(.) function

Decrement by one using down(.) function only if the current value is
positive (>1)

If the semaphore’s value is zero, the process is blocked at down(.)

function call

a ™
Semaphores

#define N 100 /* number of slots in the buffer */
typedef int semaphore; /* semaphores are a special kind of int */
semaphore mutex = 1; /* controls access to critical region */
semaphore empty = N; /* counts empty buffer slots */
semaphore full = 0; /* counts full buffer slots */

void producer(void)

{

int item;

while (TRUE) { /* TRUE is the constant 1 */
item = produce_item(); /* generate something to put in buffer */
down(&empty); /* decrement empty count */
down(&mutex); /* enter critical region */
insert_item(item); /* put new item in buffer */
up(&mutex); /* leave critical region */
up(&full); /* increment count of full slots */

void consumer(void)

{

int item;

while (TRUE) { /* infinite loop */
down(&full); * decrement full count */
down(&mutex); /* enter critical region */
item = remove_item(); /* take item from buffer */
up(&mutex); /* leave critical region */
up(&empty); /* increment count of empty slots */
consume_item(item); /* do something with the item */

}
}

@ The producer-consumer problem using semaphores Y,

e

(-

Message Passing

#define N 100

void producer(void)

{

}

int item;
message m;

while (TRUE) {

item = produce_item();
receive(consumer, &m);
build_message(&m, item);
send(consumer, &m);

void consumer(void)

{

}

int item, i;
message m;

/* number of slots in the buffer */

/* message buffer */

/* generate something to put in buffer */
/* wait for an empty to arrive */

/* construct a message to send */

/* send item to consumer */

for (i = 0;i < N; i++) send(producer, &m); /* send N empties */

while (TRUE) {
receive(producer, &m);
item = extract_item(&m);
send(producer, &m);
consume_item(item);

/* get message containing item */
/* extract item from message */
/* send back empty reply */

/* do something with the item */

The producer—consumer problem with N messages

e
Dining Philosophers (1)

* Philosophers eat/think
* Eating needs 2 forks

® Pick one fork at a time

* How to prevent deadlock

&
S

Dining Philosophers (2)
#define N 5 /* number of philosophers */

void philosopher(int i) /* i. philosopher number, from 0 to 4 */
{
while (TRUE) {

think(); /* philosopher is thinking */

take _fork(i); /* take left fork */

take fork((i+1) % N); /* take right fork; % is modulo operator */
eat(); /* yum-yum, spaghetti */

put_fork(i); /* put left fork back on the table */
put_fork((i+1) % N); /* put right fork back on the table */

A nonsolution to the dining philosophers problem

(- y

(-

Dining Philosonhers (3)

#define N 5
#define LEFT (i+N—-1)%N
#define RIGHT (i+1)%N

#define THINKING 0
#define HUNGRY 1
#define EATING 2
typedef int semaphore;
int state[N];

semaphore mutex = 1;
semaphore s[N]J;

void philosopher(int i)

{

while (TRUE) {
think();
take _forks(i);
eat();
put_forks(i);

/* number of philosophers */

/* number of i's left neighbor */

/* number of i's right neighbor */

/* philosopher is thinking */

/* philosopher is trying to get forks */

/* philosopher is eating */

/* semaphores are a special kind of int */
/* array to keep track of everyone’s state */
/* mutual exclusion for critical regions */

/* one semaphore per philosopher */

/* i. philosopher number, from 0 to N-1 */

/* repeat forever */

/* philosopher is thinking */

/* acquire two forks or block */
/* yum-yum, spaghetti */

/* put both forks back on table */

Solution to dining philosophers problem (part 1)

e

Dining Philosophers (4)

void take_ forks(int i)

/* i: philosopher number, from 0 to N-1 */

/* enter critical region */

/* record fact that philosopher i is hungry */
/* try to acquire 2 forks */

/* exit critical region */

/* block if forks were not acquired */

/* i: philosopher number, from 0 to N-1 */

/* enter critical region */

/* philosopher has finished eating */
/* see If left neighbor can now eat */
/* see If right neighbor can now eat */
/* exit critical region */

/* i: philosopher number, from 0 to N-1 */

if (state[i] == HUNGRY && state[LEFT] |= EATING && state[RIGHT] != EATING) {

{
down(&mutex);
state[i] = HUNGRY;
test(i);
up(&mutex);
down(&sJi]);

}

void put_ forks(i)

{
down(&mutex);
state[i] = THINKING;
test(LEFT);
test(RIGHT);
up(&mutex);

}

void test(i)

{

state[i] = EATING;
up(&si]);

}

}

@ Solution to dining philosophers problem (part 2)

e

typedef int semaphore;
semaphore mutex = 1;
semaphore db = 1;
intrc=0;

void reader(void)

while (TRUE) {
down(&mutex);
rc=rc+1;
if (rc == 1) down(&db);
up(&mutex);
read_data_base();
down(&mutex);
rc=rc—1;
if (rc == 0) up(&db);
up(&mutex);
use_data_read();

void writer(void)
{
while (TRUE) {
think_up_data();
down(&db);
write _data_ base();
up(&db);

The Readers and Writers Problem

/* use your imagination */

/* controls access to 'rc’ */

/* controls access to the database */

/* # of processes reading or wanting to */

/* repeat forever */

/* get exclusive access to 'rc’ */

/* one reader more now */

/* if this is the first reader ... */

/* release exclusive access to rc’ */
/* access the data */

/* get exclusive access to 'rc’ */

/* one reader fewer now */

/* if this is the last reader ... */

/* release exclusive access to 'rc’ */
/* noncritical region */

/* repeat forever */

/* noncritical region */

/* get exclusive access */

/* update the data */

/* release exclusive access */

A solution to the readers and writers problem

e

The Sleeping Barber Problem (1)

e

#define CHAIRS 5
typedef int semaphore;

semaphore customers = 0;
semaphore barbers = 0;
semaphore mutex = 1;

int waiting = 0;

void barber(void)

while (TRUE) {
down(&customers);
down(&mutex);
waiting = waiting — 1;
up(&barbers);
up(&mutex);
cut_hair();

void customer(void)
{
down(&mutex);
if (waiting < CHAIRS) {
waiting = waiting + 1;
up(&customers);
up(&mutex);
down(&barbers);
get_haircut();
} else {

up(&mutex);
}
k@ |

The Sleeping Barber Problem (2)

/* # chairs for waiting customers */
/* use your imagination */

/* # of customers waiting for service */

/* # of barbers waiting for customers */

/* for mutual exclusion */

/* customers are waiting (not being cut) */

/* go to sleep if # of customers is 0 */

/* acquire access to 'waiting’ */

/* decrement count of waiting customers */
/* one barber is now ready to cut hair =/

/* release 'waiting’ */

/* cut hair (outside critical region) */

/* enter critical region */

/* if there are no free chairs, leave */

/* increment count of waiting customers */
/* wake up barber if necessary */

/* release access to 'waiting’ */

/* go to sleep if # of free barbers is 0 */

/* be seated and be serviced */

/* shop is full; do not wait */

Solution to sleeping barber problem.

™~

/

Scheduling (1)

(@) | —A — —

Long CPU burst \

Waiting for I/O

Short CPU burst \
/ g I

— n n M | — —
() [} Lt LI LI L LI LI LI Lt LI

3

Time
_>.

® Bursts of CPU usage alternate with periods of I/ O wait
® a CPU-bound process
® an I/0O bound process

(-

e

(-

Scheduling (2)

All systems
Fairness - giving each process a fair share of the CPU
Policy enforcement - seeing that stated policy is carried out
Balance - keeping all parts of the system busy

Batch systems
Throughput - maximize jobs per hour
Turnaround time - minimize time between submission and termination
CPU utilization - keep the CPU busy all the time

Interactive systems
Response time - respond to requests quickly
Proportionality - meet users’ expectations

Real-time systems
Meeting deadlines - avoid losing data
Predictability - avoid quality degradation in multimedia systems

Scheduling Algorithm Goals

Scheduling in Batch Systems (1)

(@) (b)

An example of shortest job first scheduling

Scheduling in Batch Systems (2)

cPU O
ﬁ-(— CPU scheduler
Arriving
job
J Input 00000 N
¢ queue _/
Main
O [Jolo[lol ———> Memory < >
o
v
Admission Memory Disk
scheduler scheduler

Three level scheduling
(-

e

Scheduling in Interactive Systems (1)

¢ Round Robin Scheduling

® list of ready processes

(-

Current
process

N

Next

process

'

B

F

D

(@)

Current
process
F G A
(b)

® list of ready processes after B uses up its time slice

\

e

Scheduling in Interactive Systems (2)

©

Queue
headers

Runable processes

A

Priority 4

(Highest priority)

Priority 3

Priority 2

Priority 1

(Lowest priority)

A scheduling algorithm with four priority classes

e
Scheduling in Real-Time Systems

Schedulable real-time system

e (Given
°*m periodic events

® event i occurs within period P. and requires C, seconds

® Then the load can only be handled if

1P

C,
P

e
Policy versus Mechanism

® Separate what is allowed to be done with how it is done

® a process knows which of its children threads are important and
need priority

° Scheduling algorithm parameterized

® mechanism in the kernel

® Parameters filled in by user processes

© policy set by user process

o

Thread Scheduling (1)

Process A Process B
Order in which l

threads run \

It

picks a —
thread . = =

4
L1. Kernel picks a process

Possible: A1, A2, A3, A1, A2, A3
Not possible: A1, B1, A2, B2, A3, B3

Possible scheduling of user-level threads
® SO—mSGC prOcess quantum
® threads run 5 msec/CPU burst

(-

e
Thread Scheduling (2)

Process A Process B

1 Kernel picks a thread

A2, A3

Possible: A1, A2, A3, A1,
B2, A3, B3

Also possible: A1, B1, A2,
Possible scheduling of kernel-level threads
® 50-msec process quantum
® threads run 5 msec/ CPU burst

(-

Questions?

