
Distributed File Systems

Distributed Operating Systems

Topics

 Client-Server Architecture

 Cluster-Based Distributed File Systems

 Single and Compound Communications

 Remote Procedure Calls in NFS

 Enhancement to RPC (RPC2)

 Naming in NFS

 Semantics of File Sharing

 File Locking

 Client-Side Caching

 Security in NFS

Motivation

 Sharing data is fundamental to distributed systems

 Distributed file systems as a method of sharing data, form the

basis for many distributed applications.

 Distributed file systems allow multiple processes to share

data over long periods of time in a secure and reliable

way.

 Most distributed file systems are built following a traditional

client-server architecture, but fully decentralized solutions

exist as well.

Client-Server Architecture (1)

 Many distributed files systems are organized using

client-server architectures.

 The most widely used model is Sun Microsystem's Network

File System (NFS) deployed for UNIX-based systems.

Client-Server Architectures (2)

 (a) The remote access model.
(b) The upload/download model.

Client-Server Architectures (3)

 Figure 11-2. The basic NFS architecture for UNIX systems.

Cluster-Based Distributed File Systems (1)

 The client-server architecture is often enhanced for server

clusters.

 The file systems are adjusted for parallel applications.

 File-striping techniques are used to distribute files across

multiple servers.

 Such an organization works well only if the application is

organized in such a way that parallel data access makes sense

(for example, a dense matrix).

 For general-purpose applications file striping may not be an

effective tool.

Cluster-Based Distributed File Systems (2)

The difference between

 (a) distributing whole files across several servers
(b) striping files for parallel access.

Cluster-Based Distributed File Systems (3)

The organization of a Google cluster of servers.

Single and Compound Communications

 Every NFS operation can be implemented as a single remote
procedure call to a file server.

 The operations can be grouped together in a compound
remote procedure call.

 Compound procedure calls are simply handled in the order as
requested.

 If there are concurrent operations from other clients, then no
measures are taken to avoid conflicts.

 If an operation fails for whatever reason, then no further
operations in the compound procedure are executed, and the
results found so far are returned to the client.

Remote Procedure Calls in NFS

 (a) Reading data from a file in NFS using single procedure

 (b) Reading data using a compound procedure

Enhancement to RPC (RPC2)
 RPC2 offers reliable RPCs on top of the (unreliable) UDP

protocol.

 Each time a remote procedure is called, the RPC2 client code

starts a new thread that sends an invocation request to the server

and subsequently blocks until it receives an answer.

 As request processing may take an arbitrary time to complete,

the server regularly sends back messages to the client to let it

know it is still working on the request.

 If the server dies, sooner or later this thread will notice that

the messages have ceased and report back failure to the calling

application.

Side Effect in RPC2

 RPC2 supports side effects which is a mechanism by which

the client and server can communicate using an application-

specific protocol.

 For example, a client opening a file at a video server.

 Video data transfer from the server to the client should be

guaranteed to be within a minimum and maximum end-to-

end delay.

 RPC2 allows the client and the server to set up a separate

connection for transferring the video data to the client on

time as a side effect of an RPC call to the server.

The RPC2 Subsystem

Side effects in Coda’s RPC2 system.

Support for Multicasting in RPC2

 An important design issue in Coda is that servers keep track

of which clients have a local copy of a file.

 When a file is modified, a server invalidates local copies by

notifying the appropriate clients through an RPC.

 Invalidate messages can be multicast.

The RPC2 Subsystem

(a) Sending an invalidation message one at a time.

(b) Sending invalidation messages in parallel.

Naming in NFS (1)

Mounting (part of) a remote file system in NFS.

Naming in NFS (2)

Mounting nested directories from multiple servers in NFS.

Automounting (1)

 A simple automounter for NFS.

Automounting (2)

Using symbolic links with automounting.

Semantics of File Sharing (1)

 On a single processor, when a

read follows a write, the value

returned by the read is the

value just written.

Semantics of

File Sharing (2)

 In a distributed system with

caching, obsolete values may be

returned.

Semantics of File Sharing (3)

 Four ways of dealing with the shared files in a distributed system.

Semantics of File Sharing (4)
 In a distributed system, UNIX semantics can be achieved if

there is only one file server and clients do not cache files.

 All reads and writes go directly to the file server, which
processes them strictly sequentially.

 In practice, however, the performance of a distributed system
in which all file requests must go to a single server is poor.

 This problem is often solved by allowing clients to maintain
local copies of heavily-used files in their private (local)
caches.

 One solution of cache inconsistency is to propagate all
changes to cached files back to the server immediately.

File Locking (1)

 NFS operations related to file locking.

Share Reservation

 Share reservation is used to implement NFS for Windows-

based systems.

 When a client opens a file, it specifies the type of access it

requires (namely READ, WRITE, or BOTH), and which

type of access the server should deny other clients (NONE,

READ, WRITE, or BOTH).

 If the server cannot meet the client‘s requirements, the open

operation will fail for that client.

File Locking (2)

 The result of an open operation with share reservations in NFS.

 When the client requests shared access given the current denial state.

File Locking (3)

 The result of an open operation with share reservations in NFS. (b) When

the client requests a denial state given the current file access state.

Sharing Files in Coda (1)
 When a client successfully opens a file f, an entire copy of f is

transferred to the client's machine. The server records that
the client has a copy of f.

 If a client has opened file f for writing, any request to open f
will fail. (server has recorded that f might have been
modified).

 But if the client has opened f for reading, an attempt to get a
copy from the server for reading would succeed. An attempt
to open for writing would succeed as well.

 The second client may read from outdated copy because a
session is treated as a transaction in Coda.

Sharing Files in Coda (2)

 The transactional behavior in sharing files in Coda.

Client-Side Caching (1)

 Figure 11-21. Client-side caching in NFS.

Client-Side Caching (2)

Using the NFS callback mechanism to recall file delegation.

Client-Side Caching in Coda (1)
 Clients in Coda always cache entire files.

 Cache coherence in Coda is maintained by means of callbacks.

 For each file, the server from which a client had fetched the

file keeps track of which clients have a copy of that file

cached locally.

 When a client updates its local copy of the file for the first

time, it notifies the server, which, in turn, sends an

invalidation message to the other clients.

 Such an invalidation message is called a callback break

 The server will then discard the callback list it held for the

client it just sent an invalidation.

Client-Side Caching in Coda (2)

The use of local copies when opening a session in Coda.

Server Replication in Coda

 Two clients with a different Accessible Volume Storage Group (AVSG)

for the same replicated file.

 Coda uses a variant of Read-One, Write-All (ROWA) for consistency

Security in NFS

 The basic idea behind NFS is that a remote file system should

be presented to clients as if it were a local file system.

 Security in NFS mainly focuses on the communication

between a client and a server.

 In addition to secure RPCs, it is necessary to control file

accesses.

 A file server is responsible for verifying the access rights of

its clients

Security in NFS

The NFS security architecture.

Secure RPCs (1)
 Security is enhanced by the support for RPCSEC_GSS.

 RPCSEC_GSS is a general security framework that can support a

myriad of security mechanism for setting up secure channels

Not only provides different authentication systems, but also

supports message integrity

 Supports public-key systems that allows clients to be

authenticated using a password while servers can be authenticated

using a public key.

 The important aspect of secure RPC in NFS is that the designers

have chosen not to provide their own security mechanisms, but

only to provide a standard way for handling security.

Secure RPCs (2)

Access Control

The various kinds of users and processes distinguished by NFS

with respect to access control.

Questions?

